ConcRope.scala [raw]


package conc
// By Ravi Kandhadai Madhavan @ LARA, EPFL. (c) EPFL

import stainless.collection._
import stainless.lang._
import ListSpecs._
import stainless.annotation._

object ConcRope {

  def max(x: BigInt, y: BigInt): BigInt = if (x >= y) x else y
  def abs(x: BigInt): BigInt = if (x < 0) -x else x

  sealed abstract class Conc[T] {

    def isEmpty: Boolean = {
      this == Empty[T]()
    }

    def isLeaf: Boolean = {
      this match {
        case Empty() => true
        case Single(_) => true
        case _ => false
      }
    }

    def isNormalized: Boolean = this match {
      case Append(_, _) => false
      case _ => true
    }

    def valid: Boolean = {
      concInv && balanced && appendInv
    }

    /**
     * (a) left and right trees of conc node should be non-empty
     * (b) they cannot be append nodes
     */
    def concInv: Boolean = this match {
      case CC(l, r) =>
        !l.isEmpty && !r.isEmpty &&
          l.isNormalized && r.isNormalized &&
          l.concInv && r.concInv
      case _ => true
    }

    def balanced: Boolean = {
      this match {
        case CC(l, r) =>
          l.level - r.level >= -1 && l.level - r.level <= 1 &&
            l.balanced && r.balanced
        case _ => true
      }
    }

    /**
     * (a) Right subtree of an append node is not an append node
     * (b) If the tree is of the form a@Append(b@Append(_,_),_) then
     * 		a.right.level < b.right.level
     * (c) left and right are not empty
     */
    def appendInv: Boolean = this match {
      case Append(l, r) =>
        !l.isEmpty && !r.isEmpty &&
          l.valid && r.valid &&
          r.isNormalized &&
          (l match {
            case Append(_, lr) =>
              lr.level > r.level
            case _ =>
              l.level > r.level
          })
      case _ => true
    }

    val level: BigInt = {
      (this match {
        case Empty() => 0
        case Single(x) => 0
        case CC(l, r) =>
          1 + max(l.level, r.level)
        case Append(l, r) =>
          1 + max(l.level, r.level)
      }): BigInt
    } ensuring (_ >= 0)

    val size: BigInt = {
      (this match {
        case Empty() => 0
        case Single(x) => 1
        case CC(l, r) =>
          l.size + r.size
        case Append(l, r) =>
          l.size + r.size
      }): BigInt
    } ensuring (_ >= 0)

    def toList: List[T] = {
      this match {
        case Empty() => Nil[T]()
        case Single(x) => Cons(x, Nil[T]())
        case CC(l, r) =>
          l.toList ++ r.toList // note: left elements precede the right elements in the list
        case Append(l, r) =>
          l.toList ++ r.toList
      }
    } ensuring (res => res.size == this.size)
  }

  case class Empty[T]() extends Conc[T]
  case class Single[T](x: T) extends Conc[T]
  case class CC[T](left: Conc[T], right: Conc[T]) extends Conc[T]
  case class Append[T](left: Conc[T], right: Conc[T]) extends Conc[T]

  def lookup[T](xs: Conc[T], i: BigInt): T = {
    require(xs.valid && !xs.isEmpty && i >= 0 && i < xs.size)
    xs match {
      case Single(x) => x
      case CC(l, r) =>
        if (i < l.size) lookup(l, i)
       else lookup(r, i - l.size)          
      case Append(l, r) =>
        if (i < l.size) lookup(l, i)
        else lookup(r, i - l.size)          
    }
  } ensuring (res =>  instAppendIndexAxiom(xs, i) &&  // an auxiliary axiom instantiation that required for the proof
    res == xs.toList(i)) // correctness
    

  def instAppendIndexAxiom[T](xs: Conc[T], i: BigInt): Boolean = {
    require(0 <= i && i < xs.size)
    xs match {
      case CC(l, r) =>
        appendIndex(l.toList, r.toList, i)
      case Append(l, r) =>
        appendIndex(l.toList, r.toList, i)
      case _ => true
    }
  }.holds

  def update[T](xs: Conc[T], i: BigInt, y: T): Conc[T] = {
    require(xs.valid && !xs.isEmpty && i >= 0 && i < xs.size)
    xs match {
      case Single(x) => Single(y)
      case CC(l, r) =>
        if (i < l.size) CC(update(l, i, y), r)
        else CC(l, update(r, i - l.size, y))
      case Append(l, r) =>
        if (i < l.size) {          
          Append(update(l, i, y), r)
        } else         
          Append(l, update(r, i - l.size, y))
    }
  } ensuring (res => instAppendUpdateAxiom(xs, i, y) && // an auxiliary axiom instantiation
    res.level == xs.level && // heights of the input and output trees are equal
    res.valid && // tree invariants are preserved    
    res.toList == xs.toList.updated(i, y) && // correctness
    numTrees(res) == numTrees(xs)) //auxiliary property that preserves the potential function     

  def instAppendUpdateAxiom[T](xs: Conc[T], i: BigInt, y: T): Boolean = {
    require(i >= 0 && i < xs.size)
    xs match {
      case CC(l, r) =>
        appendUpdate(l.toList, r.toList, i, y)
      case Append(l, r) =>
        appendUpdate(l.toList, r.toList, i, y)
      case _ => true
    }
  }.holds

  /**
   * A generic concat that applies to general concTrees
   */  
  def concat[T](xs: Conc[T], ys: Conc[T]): Conc[T] = {
    require(xs.valid && ys.valid)    
    concatNormalized(normalize(xs), normalize(ys))    
  }

  /**
   * This concat applies only to normalized trees.
   * This prevents concat from being recursive
   */
  def concatNormalized[T](xs: Conc[T], ys: Conc[T]): Conc[T] = {
    require(xs.valid && ys.valid &&
      xs.isNormalized && ys.isNormalized)
    (xs, ys) match {
      case (xs, Empty()) => xs
      case (Empty(), ys) => ys
      case _ =>
        concatNonEmpty(xs, ys)
    }
  } ensuring (res => res.valid && // tree invariants
    res.level <= max(xs.level, ys.level) + 1 && // height invariants
    res.level >= max(xs.level, ys.level) &&
    (res.toList == xs.toList ++ ys.toList) && // correctness
    res.isNormalized //auxiliary properties    
    )

  def concatNonEmpty[T](xs: Conc[T], ys: Conc[T]): Conc[T] = {
    require(xs.valid && ys.valid &&
      xs.isNormalized && ys.isNormalized &&
      !xs.isEmpty && !ys.isEmpty)

    val diff = ys.level - xs.level
    if (diff >= -1 && diff <= 1) 
      CC(xs, ys)
    else if (diff < -1) {
      // ys is smaller than xs
      xs match {
        case CC(l, r) =>
          if (l.level >= r.level) 
            CC(l, concatNonEmpty(r, ys))
          else {
            r match {
              case CC(rl, rr) =>
                val nrr = concatNonEmpty(rr, ys)
                if (nrr.level == xs.level - 3) {
                  CC(l, CC(rl, nrr))
                } else {
                  CC(CC(l, rl), nrr)
                }
            }
          }
      }
    } else {
      ys match {
        case CC(l, r) =>
          if (r.level >= l.level) {
            CC(concatNonEmpty(xs, l), r)
          } else {
            l match {
              case CC(ll, lr) =>
                val nll = concatNonEmpty(xs, ll)
                if (nll.level == ys.level - 3) {                  
                  CC(CC(nll, lr), r)
                } else {                  
                  CC(nll, CC(lr, r))
                }
            }
          }
      }
    }
  } ensuring (res =>  
    appendAssocInst(xs, ys) && // instantiation of an axiom
    res.level <= max(xs.level, ys.level) + 1 && // height invariants
    res.level >= max(xs.level, ys.level) &&
    res.balanced && res.appendInv && res.concInv && //this is should not be needed
    res.valid && // tree invariant is preserved
    res.toList == xs.toList ++ ys.toList && // correctness
    res.isNormalized // auxiliary properties    
    )

  
  def appendAssocInst[T](xs: Conc[T], ys: Conc[T]): Boolean = {
    (xs match {
      case CC(l, r) =>
        appendAssoc(l.toList, r.toList, ys.toList) && //instantiation of associativity of concatenation              
          (r match {
            case CC(rl, rr) =>
              appendAssoc(rl.toList, rr.toList, ys.toList) &&
                appendAssoc(l.toList, rl.toList, rr.toList ++ ys.toList)
            case _ => true
          })
      case _ => true
    }) &&
      (ys match {
        case CC(l, r) =>
          appendAssoc(xs.toList, l.toList, r.toList) &&
            (l match {
              case CC(ll, lr) =>
                appendAssoc(xs.toList, ll.toList, lr.toList) &&
                  appendAssoc(xs.toList ++ ll.toList, lr.toList, r.toList)
              case _ => true
            })
        case _ => true
      })
  }.holds

  
  def insert[T](xs: Conc[T], i: BigInt, y: T): Conc[T] = {
    require(xs.valid && i >= 0 && i <= xs.size &&
      xs.isNormalized) //note the precondition
    xs match {
      case Empty() => Single(y)
      case Single(x) =>
        if (i == 0)
          CC(Single(y), xs)
        else
          CC(xs, Single(y))
      case CC(l, r) if i < l.size =>
        concatNonEmpty(insert(l, i, y), r)        
      case CC(l, r) =>
       concatNonEmpty(l, insert(r, i - l.size, y))      
    }
  } ensuring (res => insertAppendAxiomInst(xs, i, y) && // instantiation of an axiom 
    res.valid && res.isNormalized && // tree invariants            
    res.level - xs.level <= 1 && res.level >= xs.level && // height of the output tree is at most 1 greater than that of the input tree    
    res.toList == insertAtIndex(xs.toList, i, y) // correctness    
    )

  /**
   * Using a different version of insert than of the library
   * because the library implementation in unnecessarily complicated.  
   */
  def insertAtIndex[T](l: List[T], i: BigInt, y: T): List[T] = {
    require(0 <= i && i <= l.size)
    l match {
      case Nil() =>
        Cons[T](y, Nil())
      case _ if i == 0 =>
        Cons[T](y, l)
      case Cons(x, tail) =>
        Cons[T](x, insertAtIndex(tail, i - 1, y))
    }
  }

  // A lemma about `append` and `insertAtIndex`
  def appendInsertIndex[T](l1: List[T], l2: List[T], i: BigInt, y: T): Boolean = {
    require(0 <= i && i <= l1.size + l2.size)
    (l1 match {
      case Nil() => true
      case Cons(x, xs) => if (i == 0) true else appendInsertIndex[T](xs, l2, i - 1, y)
    }) &&
      // lemma
      (insertAtIndex((l1 ++ l2), i, y) == (
        if (i < l1.size) insertAtIndex(l1, i, y) ++ l2
        else l1 ++ insertAtIndex(l2, (i - l1.size), y)))
  }.holds

  def insertAppendAxiomInst[T](xs: Conc[T], i: BigInt, y: T): Boolean = {
    require(i >= 0 && i <= xs.size)
    xs match {
      case CC(l, r) => appendInsertIndex(l.toList, r.toList, i, y)
      case _ => true
    }
  }.holds

  def split[T](xs: Conc[T], n: BigInt): (Conc[T], Conc[T]) = {
    require(xs.valid && xs.isNormalized)
    xs match {
      case Empty() =>
        (Empty[T](), Empty[T]())
      case s @ Single(x) =>
        if (n <= 0) { 
          (Empty[T](), s)
        } else {
          (s, Empty[T]())
        }
      case CC(l, r) =>
        if (n < l.size) {
          val (ll, lr) = split(l, n)          
          (ll, concatNormalized(lr, r))
        } else if (n > l.size) {
          val (rl, rr) = split(r, n - l.size)          
          (concatNormalized(l, rl), rr)
        } else {
          (l, r)
        }
    }
  } ensuring (res  => instSplitAxiom(xs, n) && // instantiation of an axiom     
    res._1.valid && res._2.valid && // tree invariants are preserved
    res._1.isNormalized && res._2.isNormalized &&
    xs.level >= res._1.level && xs.level >= res._2.level && // height bounds of the resulting tree
    res._1.toList == xs.toList.take(n) && res._2.toList == xs.toList.drop(n) // correctness    
    )

  def instSplitAxiom[T](xs: Conc[T], n: BigInt): Boolean = {
    xs match {
      case CC(l, r) =>
        appendTakeDrop(l.toList, r.toList, n)
      case _ => true
    }
  }.holds

  def append[T](xs: Conc[T], x: T): Conc[T] = {
    require(xs.valid)
    val ys = Single[T](x)
    xs match {
      case xs @ Append(_, _) =>
        appendPriv(xs, ys)
      case CC(_, _) =>
        Append(xs, ys) //creating an append node
      case Empty() => ys
      case Single(_) => CC(xs, ys)
    }
  } ensuring (res => res.valid && //conctree invariants
    res.toList == xs.toList ++ Cons(x, Nil[T]()) && //correctness
    res.level <= xs.level + 1 
  )

  /**
   * This is a private method and is not exposed to the
   * clients of conc trees
   */
  def appendPriv[T](xs: Append[T], ys: Conc[T]): Conc[T]  = {
    require(xs.valid && ys.valid &&
      !ys.isEmpty && ys.isNormalized &&
      xs.right.level >= ys.level)

    if (xs.right.level > ys.level)
      Append(xs, ys)
    else {
      val zs = CC(xs.right, ys)
      xs.left match {
        case l @ Append(_, _) => appendPriv(l, zs)          
        case l if l.level <= zs.level => //note: here < is not possible           
          CC(l, zs)
        case l =>
          Append(l, zs)
      }
    }
  } ensuring (res => appendAssocInst2(xs, ys) && 
    res.valid && //conc tree invariants
    res.toList == xs.toList ++ ys.toList && //correctness invariants
    res.level <= xs.level + 1 )

  def appendAssocInst2[T](xs: Conc[T], ys: Conc[T]): Boolean = {
    xs match {
      case CC(l, r) =>
        appendAssoc(l.toList, r.toList, ys.toList)
      case Append(l, r) =>
        appendAssoc(l.toList, r.toList, ys.toList)
      case _ => true
    }
  }.holds

  def numTrees[T](t: Conc[T]): BigInt = {
    t match {
      case Append(l, r) => numTrees(l) + 1
      case _ => BigInt(1)
    }
  } ensuring (res => res >= 0)

  def normalize[T](t: Conc[T]): Conc[T] = {
    require(t.valid)
    t match {
      case Append(l @ Append(_, _), r) =>
        wrap(l, r)
      case Append(l, r) =>
        concatNormalized(l, r)
      case _ => t
    }
  } ensuring (res => res.valid &&
    res.isNormalized &&
    res.toList == t.toList && //correctness
    res.size == t.size && res.level <= t.level //normalize preserves level and size  
    )

  def wrap[T](xs: Append[T], ys: Conc[T]): Conc[T] = {
    require(xs.valid && ys.valid && ys.isNormalized &&
      xs.right.level >= ys.level)
    val nr  = concatNormalized(xs.right, ys)
    xs.left match {
      case l @ Append(_, _) => wrap(l, nr)      
      case l =>
        concatNormalized(l, nr)        
    }
  } ensuring (res => 
    appendAssocInst2(xs, ys) && //some lemma instantiations   
    res.valid &&
    res.isNormalized &&
    res.toList == xs.toList ++ ys.toList && //correctness
    res.size == xs.size + ys.size && //other auxiliary properties
    res.level <= xs.level    
    ) 
}